Simon Wilton Davis

Simon Wilton Davis

Assistant Professor in Neurology

External Address: 
B243q LSRC, Durham, NC 27708
Internal Office Address: 
DUMC Box 2900, Bryan Research Building, Rm 227E, Durham, NC 27708
Phone: 
919.668.2299

Overview

My research centers around the use of structural and functional imaging measures to study the shifts in network architecture in the aging brain. I am specifically interested in changes in how changes in structural and functional connectivity associated with aging impact the semantic retrieval of word or fact knowledge. Currently this involves asking why older adults have particular difficulty in certain kinds of semantic retrieval, despite the fact that vocabularies and knowledge stores typically improve with age.

A second line of research involves asking questions about how this semantic system is organized in young adults, understanding which helps form a basis for asking questions about older adults. To what degree are these semantic retrieval processes lateralized? What cognitive factors affect this laterality? How are brain structures like the corpus callosum involved in mediating distributed activation patterns associated with semantic retrieval? 

Education & Training

  • Ph.D., Duke University 2011

Selected Grants

Impact of Timing, Targeting, and Brain State on rTMS of Human and Non-Human Primates awarded by National Institutes of Health (Co Investigator). 2017 to 2021

Bilateral Brain Dynamics Supporting Cognition in Normal Aging and Dementia awarded by National Institutes of Health (Principal Investigator). 2017 to 2021

Using fMRI-guided TMS to increase central executive function in older adults awarded by National Institutes of Health (Investigator). 2015 to 2020

Role of white-matter connectivity on age-related reorganization of brain networks awarded by National Institutes of Health (Graduate Student). 2008 to 2011

Beynel, Lysianne, et al. “Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies..” Neurosci Biobehav Rev, vol. 107, Aug. 2019, pp. 47–58. Pubmed, doi:10.1016/j.neubiorev.2019.08.018. Full Text

Fuhrmann, Delia, et al. “Strong and specific associations between cardiovascular risk factors and white matter micro- and macrostructure in healthy aging..” Neurobiol Aging, vol. 74, Feb. 2019, pp. 46–55. Pubmed, doi:10.1016/j.neurobiolaging.2018.10.005. Full Text

Beynel, L., et al. “Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: A randomized within-subject comparison..” Plos One, vol. 14, no. 3, 2019. Pubmed, doi:10.1371/journal.pone.0213707. Full Text

Davis, Simon W., et al. “Cooperative contributions of structural and functional connectivity to successful memory in aging..” Netw Neurosci, vol. 3, no. 1, 2019, pp. 173–94. Pubmed, doi:10.1162/netn_a_00064. Full Text Open Access Copy

Davis, S. W., et al. “Complementary topology of maintenance and manipulation brain networks in working memory..” Sci Rep, vol. 8, no. 1, Dec. 2018. Pubmed, doi:10.1038/s41598-018-35887-2. Full Text

Neacsiu, Andrada D., et al. “On the Concurrent Use of Self-System Therapy and Functional Magnetic Resonance Imaging-Guided Transcranial Magnetic Stimulation as Treatment for Depression..” J Ect, vol. 34, no. 4, Dec. 2018, pp. 266–73. Pubmed, doi:10.1097/YCT.0000000000000545. Full Text

Monge, Zachary A., et al. “Functional networks underlying item and source memory: shared and distinct network components and age-related differences..” Neurobiol Aging, vol. 69, Sept. 2018, pp. 140–50. Pubmed, doi:10.1016/j.neurobiolaging.2018.05.016. Full Text

Wang, Wei-Chun, et al. “Excitatory TMS modulates memory representations..” Cogn Neurosci, vol. 9, no. 3–4, July 2018, pp. 151–66. Pubmed, doi:10.1080/17588928.2018.1512482. Full Text

Green, Emma, et al. “Exploring patterns of response across the lifespan: the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study..” Bmc Public Health, vol. 18, no. 1, June 2018. Pubmed, doi:10.1186/s12889-018-5663-7. Full Text

Wang, Wei-Chun, et al. Excitatory TMS Boosts Memory Representations. Mar. 2018. Epmc, doi:10.1101/279547. Full Text

Pages

Davis, Simon, et al. “F113. Hippocampal Connectivity Insulates High-Risk Adolescents From the Relationship Between Stress and Depressive Symptoms.” Biological Psychiatry, vol. 83, no. 9, Elsevier BV, 2018, pp. S281–S281. Crossref, doi:10.1016/j.biopsych.2018.02.726. Full Text

Deng, Zhi-De, et al. “T176. Controllability of Structural Brain Networks in Depressed Patients Receiving Repetitive Transcranial Magnetic Stimulation.” Biological Psychiatry, vol. 83, no. 9, Elsevier BV, 2018, pp. S196–S196. Crossref, doi:10.1016/j.biopsych.2018.02.513. Full Text

Hall, Shana, et al. “AN FMRI INVESTIGATION OF THE NEURAL BASIS OF INVOLUNTARY MEMORY: HOW DO THEY DIFFER FROM ESTABLISHED VOLUNTARY MEMORY NETWORKS?.” Journal of Cognitive Neuroscience, MIT PRESS, 2013, pp. 110–110.

Madden, David, et al. “AGE-RELATED DIFFERENCES IN THE FUNCTIONAL NEUROANATOMY OF TOP-DOWN ATTENTIONAL CONTROL DURING VISUAL SEARCH.” Journal of Cognitive Neuroscience, MIT PRESS, 2013, pp. 62–63.

Brooks, Jeffrey, et al. “NEURAL CORRELATES OF THE OWN-AGE BIAS IN YOUNGER AND OLDER ADULTS.” Journal of Cognitive Neuroscience, MIT PRESS, 2013, pp. 35–35.

Yanovsky, I., et al. “Quantifying deformation using information theory: The log-unbiased nonlinear registration.” 2007 4th Ieee International Symposium on Biomedical Imaging: From Nano to Macro  Proceedings, 2007, pp. 13–16. Scopus, doi:10.1109/ISBI.2007.356776. Full Text

Leow, A., et al. “Inverse consistent mapping in 3D deformable image registration: Its construction and statistical properties.” Lecture Notes in Computer Science, vol. 3565, 2005, pp. 493–503.

Price, J. C., et al. “Quantitative and statistical analyses of PET imaging studies of amyloid deposition in humans.” Ieee Nuclear Science Symposium Conference Record, vol. 5, 2004, pp. 3161–64.

Liu, Y., et al. “Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer's disease classification.” Lecture Notes in Computer Science, vol. 3216, no. PART 1, 2004, pp. 393–401.